
Postprint, June 2019

Monotone Conformance Checking for Partially
Matching Designed and Observed Processes

Artem Polyvyanyy
School of Computing and Information Systems

The University of Melbourne
Email: artem.polyvyanyy@unimelb.edu.au

Anna Kalenkova
Laboratory of Process-Aware Information Systems

Higher School of Economics
Email: akalenkova@hse.ru

Abstract—Conformance checking is a subarea of process min-
ing that studies relations between designed processes, also called
process models, and records of observed processes, also called
event logs. In the last decade, research in conformance checking
has proposed a plethora of techniques for characterizing the
discrepancies between process models and event logs. Often, these
techniques are also applied to measure the quality of process
models automatically discovered from event logs. Recently, the
process mining community has initiated a discussion on the
desired properties of such measures. This discussion witnesses
the lack of measures with the desired properties and the lack of
properties intended for measures that support partially matching
processes, i.e., processes that are not identical but differ in some
steps. The paper at hand addresses these limitations. Firstly, it
extends the recently introduced precision and recall conformance
measures between process models and event logs that possess the
desired property of monotonicity with the support of partially
matching processes. Secondly, it introduces new intuitively de-
sired properties of conformance measures that support partially
matching processes and shows that our measures indeed possess
them. The new measures have been implemented in a publicly
available tool. The reported qualitative and quantitative evalu-
ations based on our implementation demonstrate the feasibility
of using the proposed measures in industrial settings.

Keywords: Process mining, conformance checking, entropy,
partial matching, monotonicity.

I. INTRODUCTION

Process mining aims to discover, monitor, and improve
processes observed in the real world using the knowledge
accumulated in event logs produced by executions of designed
processes implemented in modern information systems [1],
where an event log is a collection of recorded traces each
capturing an instance of an executed business process. Process
discovery and conformance checking are two central subareas
in process mining. Process discovery studies methods, tech-
niques, and tools to automatically construct a “good” process
model from an event log to aggregate and analyze the knowl-
edge about business processes as they were observed in the
real world [2]–[4]. Conformance checking studies methods,
techniques, and tools to characterize and quantify differences
between an event log and process model [5]–[8], e.g., to
measure and explain the “goodness” of the model (constructed
or discovered) that encodes the traces from the event log.

Two basic measures in conformance checking are precision
and recall (a.k.a. fitness). Precision aims to characterize the
relation between the amount of process information shared by

the traces of an event log and process model and the amount of
process information encoded in the traces of the model. Recall,
in turn, strives to characterize the relation between the shared
information and the information about processes encoded in
the event log traces. The precision and recall are usually
defined as numeric quantities that take values between (and
including) zero and one. The precision and recall values of
zero represent a situation of no similarities between the traces
of the event log and the model traces. The greater the precision
and recall values, the greater the similarity between the event
log and the process model traces. Finally, the precision and
recall values of one represent the situation when the event log
and process model capture the same behavior.

Precision and recall are central performance measures for
information retrieval systems [9]. Given a set of relevant
documents and a set of documents retrieved/discovered by
an information retrieval system, precision is the fraction of
relevant retrieved documents over the retrieved documents,
whereas recall is the fraction of relevant retrieved documents
over the relevant documents. Similarly, given traces recorded
in an event log (a.k.a. relevant traces) and a set of traces
described by a process model discovered from the event log,
e.g., using techniques proposed in [2]–[4], (a.k.a. discovered
traces), precision is the fraction of relevant discovered traces
over the discovered traces, whereas recall is the fraction of
relevant discovered traces over the relevant traces.

Despite being conceptually clean and intuitive, the proposed
above conformance measures of precision and recall face at
least one major challenge. Unlike in information retrieval,
where both collections of relevant and retrieved documents
are finite, the set of traces encoded in a (discovered) process
model is often infinite. This makes it practically difficult
to define conformance measures with the desired properties,
e.g., determinism and monotonicity, as it is not immediate to
define how to measure infinite collections of traces. In [8], we
overcame this challenge by proposing process conformance
measures of precision and recall based on the notion of
topological entropy over regular languages.

Although the entropy-based precision and recall are de-
terministic and monotonic measures, they perform unsatis-
factorily in the presence of non-identical traces, even when
traces differ only in a single process step. For instance, if
each trace in an event log is not described in a process

model but differs with some trace of the model in only one
process step, precision and recall values between the event
log and model are equal to zero, just like in the situation
when these traces are completely different. In this paper, we
overcome this limitation. We achieve this by “diluting” the
traces captured in the compared event log and process model
and then comparing these diluted traces. In our approach, the
dilution of a trace results in the inclusion of all its sub-traces
into the collection of traces captured in the corresponding
event log or process model. We demonstrate that the extended
measures possess intuitively desired properties for precision
and recall in the presence of partially matching traces, viz. the
more (in the number of traces) and the longer (in the number
of matched process steps) are the partial matches between the
traces captured in an event log and process model, the greater
are the precision and recall values between them.

To summarize, this paper makes these contributions:

• Extends the entropy-based precision and recall measures
proposed in [8] to support the partial matching between
traces via comparisons of their sub-traces;

• Introduces, for the first time, properties for conformance
measures that address the partial matching of traces; note
that all the so far introduced properties for conformance
measures [8], [10], [11] only address the comparisons of
identical traces; and

• Reports on qualitative and quantitative evaluations of the
proposed precision and recall measures that demonstrate
the feasibility of using them in industrial settings.

The next section gives a motivating example. Section III
introduces the basic notions. Section IV presents the entropy-
based measures, whereas Section V extends them with partial
matching support. Section VI presents the results of our
evaluation, before stating concluding remarks.

II. MOTIVATING EXAMPLE

Consider a simple process of booking a flight ticket captured
as a finite automaton in Figure 1a. The process starts with the
user opening a booking window. Then, she fills her name and
passport data (in any order). Finally, the booking is confirmed
and the window is closed. Suppose that the user behavior in the
real-world can deviate from the one specified in the reference
model. For example, a user may insert the name twice and
close the window without the confirmation; this sequence of
steps is captured in the automaton shown in Figure 1b. Despite
the fact that the automata presented in Figure 1 describe
similar traces, precision and recall measures that rely on exact
comparisons of traces cannot appraise this similarity (i.e., the
corresponding values of precision and recall equal to zero).

To address this limitation, we observe that the traces
captured in the example automata coincide if certain steps get
replaced with silent (τ) steps. If one “mirrors” step confirm
in the automaton in Figure 1a and one step fill name (any
of the two) in the only trace of the automaton in Figure 1b
with silent steps, cf. the dashed transitions in the figure,
then both resulting automata describe the observable trace

A

open
window

B

fill
name

C fill passport
data

E
confirm

F G

close
window

D
fill passport

data
fill

name

Ʈ

(a)

1

open
window

2

fill
name

3

fill
name

4

fill passport
data

5 6

close
window

Ʈ

(b)

Figure 1: Two finite automata.

〈open window , fill name, fill passport data, close window〉.
This idea for identifying partially matching traces through
their “dilution” with silent steps lies at the heart of the
solution proposed in the work at hand.

According to the conformance measures proposed in this
paper, precision and recall values between the automata in
Figure 1 are 0.859 and 0.694, respectively. If one inserts
step confirm between fill passport data and close window in
the only trace of the automaton in Figure 1b, i.e., makes it
more similar to the traces of the automaton in Figure 1a, the
values of precision and recall increase to 0.978 and 0.973,
respectively, capturing the monotonic nature of our measures.

III. PRELIMINARIES

This section introduces basic notations and definitions.

A. Sequences, Languages, and Event Logs

Let X be a set of elements. A power set over set X , denoted
as P(X), is the set of all subsets of X .

By 〈x1, x2, . . . , xk〉, where x1, x2, . . . , xk ∈ X , k ∈ N0,
we denote a sequence of elements from X of length k. The
empty sequence of zero length is represented by 〈〉. A concate-
nation of two sequences 〈x1, x2, . . . , xk〉 and 〈y1, y2, . . . , yl〉
is denoted by 〈x1, x2, . . . , xk〉 · 〈y1, y2, . . . , yl〉 and equals to
〈x1, x2, . . . , xk, y1, y2, . . . , yl〉. X∗ designates the set of all
finite sequences over X (including the empty sequence).

An alphabet is any nonempty finite set. The elements of
an alphabet are its labels. A (formal) language L over an
alphabet Σ is a (not necessarily finite) set of sequences, or
words, of elements from Σ, i.e., L ⊆ Σ∗. By Cn(L), we
denote the set of all words in L of length n. By Ξ, we denote
a universe of all possible observable labels. τ designates a
special silent label, such that τ /∈ Ξ and 〈τ〉 = 〈〉. Let L1 and
L2 be two languages. Then, their concatenation is the language
{l1 · l2 | l1 ∈ L1, l2 ∈ L2} denoted by L1 ◦ L2.

Let E be a finite nonempty set of events. A finite language
L ⊆ E∗ is an event log and its words are called traces.

B. Finite Automata

A deterministic finite automaton, or a DFA, is a 5-tuple
(Q,Λ, δ, q0, A), where Q is a finite set of states, Λ ⊂ Ξ is the
input alphabet, such that Q and Λ are disjoint, δ : Q× (Λ ∪

{τ}) → Q is the transition function, q0 ∈ Q is a start state,
and A ⊆ Q is a set of accepting states.

A computation of a DFA B = (Q,Λ, δ, q0, A) is either the
empty sequence or a sequence σ = 〈a1, a2, . . . , an〉, n ∈ N,
where ai ∈ Λ ∪ {τ}, i ∈ [1..n], and there is a sequence of
states 〈q0, q1, . . . , qn〉, where qj ∈ Q, j ∈ [0..n], such that for
every k ∈ [1..n] it holds that δ(qk−1, ak) = qk. We say that σ
leads to qn. By convention, the empty sequence always leads
to the start state. Note that when referring to computations
silent labels can be omitted, as 〈a1, a2, ..., ai, τ, ai+1, ..., ak〉 =
〈a1, a2, ..., ai〉 · 〈τ〉 · 〈ai+1, ..., ak〉 = 〈a1, a2, ..., ai〉 · 〈〉 ·
〈ai+1, ..., ak〉 = 〈a1, a2, ..., ak〉. In what follows, we only
consider computations without silent labels. We say that B
accepts γ ∈ Λ∗ iff γ is a computation of B that leads to
an accepting state q ∈ A. The language of B is denoted by
lang(B) and is the set of all sequences B accepts; we also
say that B recognizes lang(B).

A DFA (Q,Λ, δ, q0, A) is ergodic if its underlying graph is
strongly irreducible, i.e., for all (x, y) ∈ Q × Q there exists
a sequence of states 〈q1, . . . , qn〉 ∈ Q∗, n ∈ N, such that
q1 = x, qn = y, and for every k ∈ [1 .. n − 1] there exists
λ ∈ Λ ∪ {τ} such that δ(qk, λ) = qk+1.

A language L ⊆ Σ∗ is regular iff it is recognized by a
DFA. L ⊆ Σ∗ is irreducible if, given two words w1 and w2

in L, there exists a word w ∈ Σ∗, such that w1 · w · w2 ∈ L.
A regular language L is irreducible iff it is a language of an
ergodic DFA [12].

IV. ENTROPY-BASED CONFORMANCE CHECKING

In this paper, we consider models such that their behaviors
can be described in terms of DFAs. These can be Petri nets or
BPMN models that induce finite reachability graphs, or (not
necessary deterministic) finite automata, which can always be
converted into equivalent DFAs [13]. As an event log induces
a finite language, it can, as well, be encoded as a DFA.

To compute precision and recall between a model and
event log, we compare the languages the corresponding DFAs
recognize. Specifically, we measure the ration of the traces
the model and log share to the traces captured in the model
or log. To obtain such a measure over collections of traces,
we estimate the cardinality of the corresponding languages,
i.e., the number of words that belong to the languages.

Next, in Section IV-A, we present the notion of topological
entropy. We use topological entropy to define the notion of the
short-circuit entropy of a regular language (see Section IV-B),
which, in turn, in Section IV-C, is used to define the entropy-
based precision and recall between a model and log.

A. Topological Entropy

The cardinality of a finite language L ⊆ Σ∗ can be naturally
defined as |L|, i.e., the number of words in L. However, this
definition is not particularly useful for infinite languages. One
can use topological entropy to estimate the cardinality of an
irreducible language L [12], which is defined as follows:

ent(L) = lim
n→∞

sup
log |Cn(L)|

n
.

I
a

II
b

III

IVc

d
V

d

e
VI

(a)

χ

I
a

II
b

III

IVc

d
V

d

e
VI

(b)

Figure 2: Two finite automata; (b) is ergodic.

Thus, the topological entropy of an irreducible language
estimates the number of distinct words in the language with
respect to the length of these words. One can compute the
topological entropy of an irreducible language L as the log-
arithm of the Perron-Frobenius eigenvalue of the adjacency
matrix of a DFA that recognizes L [12].

B. Short-circuit Entropy

Because topological entropy is defined over irreducible
languages, one cannot use it to estimate cardinality of in-
finite non-irreducible regular languages or finite languages,
e.g., event logs. To allow estimating cardinality of an arbitrary
regular language, in [8], we proposed the notion of a short-
circuit measure over languages. Given a measure over lan-
guages m : L → R+

0 , where L ⊆ P(Σ∗) and Σ ⊂ Ξ, its short-
circuit version m• is defined as m•(L) = m((L◦{〈χ〉})∗◦L),
where L ⊆ Σ∗ and χ ∈ Ξ \ Σ. Because given a regular
language L, (L ◦ {〈χ〉})∗ ◦ L is irreducible [8], ent•(L) can
always be computed.

Hence, to compute the short-circuit (topological) entropy
of a regular language L, i.e., ent•(L), one can transform
a DFA that recognizes L by inserting additional transitions
marked by a special label χ not observed in L that connect all
the accepting states of the DFA with its start state, and then
compute the topological entropy of the language recognized
by the resulting automaton. For example, ent•(L), where L
is the language recognized by the DFA in Figure 2a, can be
computed as topological entropy of the language recognized
by the DFA in Figure 2b.

It holds that ent•(∅) = 0. Moreover, for two regular
languages L1 and L2, such that L1 ⊂ L2, it holds that
ent•(L1) < ent•(L2), refer to [8] for details. Next, we show
two additional properties of the short-circuit entropy measure
over regular languages. These properties of language measures
are used to establish several new properties of the entropy-
based precision and recall measures, which also apply for the
new conformance measures that support partial matching of
processes, refer to Section V.

If for every length, one regular language has no more words
of that length than the other regular language, then the short-
circuit entropy of the former language is less than or equal to
the short-circuit entropy of the latter language.

Theorem 1 (Monotonicity on the number of words).
Let L1 and L2 be two regular languages such that ∀ k ∈ N :
|Ck(L1)| ≤ |Ck(L2)|. Then, ent•(L1) ≤ ent•(L2).

Proof. Let xn = log |Cn(L1)|
n and yn = log |Cn(L2)|

n , n≥1.
Suppose that {xnl

}∞l=1, where n1 < n2 < . . . , is a subse-
quence of {xn}∞n=1, such that liml→∞ xnl

= ent•(L1).
Consider the corresponding sequence {ynl

}∞l=1. As fol-
lows from the theorem conditions, ∀l ∈ N, l ≥ 1 : xnl

≤ ynl
,

then liml→∞ supxnl
≤ liml→∞ sup ynl

. Hence, ent•(L1) =
liml→∞ xnl

= liml→∞ supxnl
≤ liml→∞ sup ynl

≤ ent•(L2).

Next, we refine the above property.

Theorem 2 (Strict monotonicity on the number of words).
Let L1 and L2 be two regular languages such that ∀ k ∈ N :
|Ck(L1)| ≤ |Ck(L2)| and ∃ k0 ∈ N : |Ck0(L1)| < |Ck0(L2)|.
Then, ent•(L1) < ent•(L2).

Proof. Language L1 does not contain the maximum number
of sequences of length k0, because |Ck0(L1)| < |Ck0(L2)|.
Let l be a sequence such that l ∈ Σ∗, |l| = k0 and l /∈ L1.
Let us consider language L′1 = L1 ∪ {l}. Then, ent•(L1) <
ent•(L′1), because of the monotonicity of the short-circuit en-
tropy measure, see [8]. According to Theorem 1, ent•(L′1) ≤
ent•(L2). Thus, ent•(L1) < ent•(L2).

Theorems 1 and 2 allow comparing short-circuit entropy mea-
sures of languages that are not in the containment relationship.
According to Theorem 2, for example, for two languages
L1 = {〈a, a〉, 〈a, a, a〉, 〈a, a, a, a〉, ...} and L2 = {〈b〉, 〈b,
b〉, 〈b, b, b〉, 〈b, b, b, b〉, ...} it holds that ent•(L1) < ent•(L2).

C. Precision and Recall

Let M and L be two regular languages that capture the
traces of the model and log, respectively. The intersection of
M and L is a regular language, refer to [13]. One can use
ent•(M ∩ L) to estimate the cardinality of the collection of
all the traces shared by the model and log. Consequently, we
define the entropy-based precision (prec) and recall (recall)
between M and L as follows:

prec(M,L) = ent•(M∩L)
ent•(M) , recall(M,L) = ent•(M∩L)

ent•(L) .

In [8], we showed that as the number of traces shared by the
model and log increases, the entropy-based precision and recall
also increase. Next, we demonstrate three additional properties
of the entropy-based precision and recall, which also hold for
their extensions proposed in Section V.

Theorem 3 (Monotonicity).
Let L1 and L2 be two event logs (let M1 and M2 be two reg-
ular languages) such that L1 ⊂ L2 (M1 ⊂M2). Let M be a
regular language (let L be an event log). Then, prec(M,L1) ≤
prec(M,L2) (recall(M1, L) ≤ recall(M2, L)).

Proof. Since it holds that L1 ⊂ L2 (M1 ⊂M2), it also
holds that M ∩ L1 ⊆M ∩ L2 (M1 ∩ L ⊆M2 ∩ L). Because of
the monotonicity of the short-circuit entropy, it holds that
ent•(M ∩L1) ≤ ent•(M ∩L2) (ent•(M1∩L) ≤ ent•(M2∩

L)). Hence, it also holds that prec(M,L1) ≤ prec(M,L2)
(recall(M1, L) ≤ recall(M2, L)).

Theorem 3 shows that the “monotonicity of languages” implies
the monotonicity of the corresponding precision and recall
values. Next, we demonstrate two additional properties of
precision and recall that follow from Theorems 1 and 2. These
properties are discussed and exemplified in Section V.

Theorem 4 (Generalized monotonicity).
Let L1 and L2 be two event logs (let M1 and M2 be two
regular languages) and let M be a regular language (let
L be an event log) such that ∀k ∈ N : |Ck(M ∩ L1)| ≤
|Ck(M ∩ L2)| (∀k ∈ N : |Ck(M1 ∩ L)| ≤ |Ck(M2 ∩
L)|). Then, prec(M,L1) ≤ prec(M,L2) (recall(M1, L) ≤
recall(M2, L)).

Theorem 4 follows from Theorem 1 applied to M ∩ L1 and
M ∩L2 (M1∩L and M2∩L). This result can be conveniently
refined into the next one.

Theorem 5 (Generalized strict monotonicity).
Let L1 and L2 be two event logs (let M1 and M2 be two
regular languages) and let M be a regular language (let L be
an event log) such that ∀ k ∈ N : |Ck(M ∩ L1)| ≤ |Ck(M ∩
L2)| (∀ k ∈ N : |Ck(M1 ∩ L)| ≤ |Ck(M2 ∩ L)|) and ∃ k0 ∈
N : |Ck0(M ∩ L1)| < |Ck0(M ∩ L2)| (∃ k0 ∈ N : |Ck0(M1 ∩
L)| < |Ck0(M2 ∩ L)|). Then, prec(M,L1) < prec(M,L2)
(recall(M1, L) < recall(M2, L)).

Theorem 5 follows immediately from the application of Theo-
rem 2 to languages M ∩L1 and M ∩L2 (M1∩L and M2∩L).

Consider the two DFAs shown in Figure 3a and Figure 3b
that recognize languages M1 and M2, respectively, and three
simple event logs L1 = {〈a, b〉 , 〈b, a〉}, L2 = {〈〉 , 〈a, b〉 ,
〈b, a〉 , 〈a, c〉 , 〈b, a, b〉}, and L3 = {〈b, a, d〉 , 〈b, a, b〉}.

1

a
2

b,c

4

2

3
b a

M1

(a)

1

a
2

b,c

4

2

3
b a

d

M2

(b)

Figure 3: Two finite automata.

The entropy-based precision and recall values for all the
combinations of these two regular languages and three event
logs are listed in Table I below.

Table I: The entropy-based precision and recall values.

Model Log prec recall

M1 L1 0.874 1.000
M1 L2 1.000 0.745
M1 L3 0.000 0.000
M2 L1 0.754 1.000
M2 L2 0.863 0.745
M2 L3 0.000 0.000

The values in Table I justify, e.g., that M1 contains all
the traces from L1 (recall(M1, L1) = 1) and does not
contain some traces from L2 (recall(M1, L2) < 1). One

can also conclude that L2 “covers” all the behavior of M1

(prec(M1, L2) = 1). Furthermore, M2 does not contain
some traces from L2 (recall(M2, L2) < 1). Interestingly,
according to the results in [8], it holds that prec(M2, L1) <
prec(M1, L1) and prec(M2, L2) < prec(M1, L2), because
L1 ⊂M1 ⊂M2, M1 ∩L2 = M2 ∩L2, and (M1 ∩L2) ⊂M1.

Note that L3 does not intersect with M1 (or M2). Con-
sequently, despite some shared subsequences in their traces,
e.g., 〈b, a〉, the corresponding precision and recall values equal
to zero. This limitation is addressed in the next section.

V. PARTIALLY MATCHING APPROACH

In this section, we extend the conformance checking ap-
proach summarized in the previous section with support for
partial matching of the compared model and log. We first
define additional notions and discuss their properties, refer
to Section V-A. We then use these notions to propose new
precision and recall measures, refer to Section V-B.

A. Entropy and τ -closure of Regular Languages

Let B = (Q,Λ, δ, q0, A) be a DFA that recognizes language
L, i.e., lang(B) = L. We construct the τ -closure of B, de-
noted by B′, as follows: B′ = (Q,Λ, δ′, q0, A), δ′(q1, a) = q2
iff (δ(q1, a) = q2) ∨ ((a = τ) ∧ (∃ a′ : δ(q1, a

′) = q2)). In
other words, for each two states connected via a transition in
B, we add an additional silent transition that connects these
states. We call B′ (lang(B′)) the τ -closure of B (L). Figure 4
shows the τ -closure of the automaton from Figure 2a.

I
a

II
b

III

IVc

d
V

d

e
VI

τ τ τ τ

τ
τ

Figure 4: τ -closure of the DFA from Figure 2a.

By L′, we denote the language recognized by B′. Note that
L ⊆ L′. Next, we state two important properties of the short-
circuit entropy over the τ -closures of regular languages.

Theorem 6 (Monotonicity of τ -closure).
Let L1 and L2 be two regular languages such that L1 ⊂ L2.
Then, it holds that ent•(L′1) ≤ ent•(L′2).

Proof. For each α ∈ L1 it holds that α ∈ L2. Consequently,
all the sequences obtained from α by the τ -closure operation
belong to both L′1 and L′2. This implies L′1 ⊆ L′2. Conse-
quently, ent•(L′1) ≤ ent•(L′2) because of the monotonicity
of the ent• measure.

Hence, τ -closure relaxes the strict monotonicity. Note that
in case the τ -closure operation does not preserve the strict
monotonicity, both measures, the exact trace matching and
the partial matching, can be applied to obtain the complete
information about deviations between the languages. We now
define a condition under which one obtains strict monotonicity.

Theorem 7 (Strict monotonicity of τ -closure).
Let L1 and L2 be two regular languages, such that ∃α ∈

L2 : α /∈ L′1 and ∀β ∈ L1 : β ∈ L′2, then L′1 ⊂ L′2 and
ent•(L′1) < ent•(L′2).

Proof. Since for each β ∈ L1 it holds that β ∈ L′2, it also
holds that {β}′ ⊆ L′2, because if a τ -closure of a language
contains β, it contains all the sequences obtained from β using
the τ -closure operation. Consequently, L′1 ⊆ L′2. Additionally,
since ∃α ∈ L2 : α /∈ L′1, it is a strict inclusion L′1 ⊂ L′2, and
ent•(L′1) < ent•(L′2).

Suppose that L1 and L2 are two regular languages, such that
L′1 = (L′2)\{α} and α ∈ L2, i.e., their τ -closures differ in one
sequence α. Both L′1 and L′2 contain all “sub-words” of α, i.e.,
{α}′\α ⊆ L′1 and {α}′\α ⊂ L′2. According to Theorem 7,
it holds that ent•(L′1) < ent•(L′2). Consequently, one may
note that a “long” sequence α belonging to L2 which cannot
be generated by constructing a τ -closure of L1 plays a role
when comparing ent•(L′1) and ent•(L′2), even if L′1 and L′2
share the same set of its “sub-words”.

Consider two models that recognize languages M1 =
{〈a, b〉, 〈a, c〉 〈b, c〉 〈d〉} and M2 = {〈a, b, c〉, 〈d〉}. Obviously,
M ′2 = M ′1 ∪ {〈a, b, c〉}. Let L = {〈a, b, c〉} be a language.
According to Theorem 7, recall(M ′2, L

′) > recall(M ′1, L
′),

as the “long” sequence 〈a, b, c〉 belongs to M2 and cannot be
obtained by applying the τ -closure operation to M1.

B. Precision and Recall

Let M and L be languages recognized by DFAs that encode
a model and log, respectively. The relations between M and
L and their τ -closures are represented in Figure 5.

Lˈ Mˈ

Mˈ∩Lˈ

M L
M∩L

Figure 5: Intersection of two languages and their τ -closures.

We propose to measure precision and recall between the model
and log based on the τ -closures of M and L as follows:

precτ (M,L) = ent•(M ′∩L′)
ent•(M ′) ,

recallτ (M,L) = ent•(M ′∩L′)
ent•(L′) ,

where M ′ and L′ are the τ -closures of M and L, respectively.
Note that first M ′, L′, and M ′ ∩ L′ are constructed and
only after that the short-circuit entropy is computed. Table II
extends Table I by also showing the new precision and recall
values for the corresponding models and logs.

These example values show that although log L3 has no
common traces with the models, they can be partially matched.
According to Theorem 7, it holds that L′1 ⊂ L′2, and according
to Theorem 3 (applied to L′1, L′2, M ′1, and M ′2; note that

Table II: The entropy-based precision and recall values, both
original and based on the τ -closures of languages.

Model Log prec recall precτ recallτ

M1 L1 0.874 1.000 0.873 1.000
M1 L2 1.000 0.745 1.000 0.960
M1 L3 0.000 0.000 0.873 0.811
M2 L1 0.754 1.000 0.615 1.000
M2 L2 0.863 0.745 0.704 0.960
M2 L3 0.000 0.000 0.733 0.966

τ -closures of regular languages are also regular languages),
new precision values for L1 (0.873 and 0.615) are indeed
less than or equal to the corresponding new precision values
for L2 (1.000 and 0.704). Interestingly, precτ (M1, L2) = 1
because M ′1 ⊆ L′2. Also, note that the absolute values of the
reported measures are of minor importance, as those are their
relations that provide useful insights. According to Theorem 7,
L′1 ⊂ L′3, similarly, the new precision values for L3 (0.873
and 0.733) are greater than or equal to the corresponding new
precision values for L1 (0.873 and 0.615).

It is easy to verify that M ′1 ⊂M ′2, refer to Figure 3. Then,
according to Theorem 3, recall values for M2 are always
greater or equal to the corresponding recall values for M1.

Let us take a closer look at logs L2 and L3. None of these
logs includes the other; same holds for logs L′2 and L′3. It holds
that M ′2∩L′2 = {〈〉 , 〈a〉 , 〈b〉 , 〈c〉 , 〈a, b〉 , 〈b, a〉 , 〈a, c〉} and
M ′2∩L′3 = {〈〉 , 〈a〉 , 〈b〉 , 〈d〉 , 〈a, b〉 , 〈b, a〉 , 〈a, d〉 , 〈b, d〉 ,
〈b, a, d〉}. The former language contains less number of se-
quences of the length two and three. Hence, by Theorem 5,
it must hold that precτ (M2, L2) < precτ (M2, L3). Indeed,
according to the values in Table II: precτ (M2, L2) = 0.704
and precτ (M2, L3) = 0.733. Note that this property allows
comparing languages over different alphabets.

VI. EXPERIMENTAL RESULTS

The proposed partial matching technique has been imple-
mented and is publicly available.1 Next, we evaluate this
implementation over synthetic and real-life datasets.

A. Synthetic Dataset

In this section, we experiment with a synthetic event
log and a set of corresponding process models described
in [14], [15]. The event log is defined as this set of traces:
L = {〈A,B,D,E, I〉 , 〈A,C,D,G,H, F, I〉 , 〈A,C,G,D,H, F, I〉 ,
〈A,C,H,D, F, I〉 , 〈A,C,D,H, F, I〉}. The set of process
models consists of nine Petri nets shown in Figure 6. The
reachability graphs of all these nine Petri nets can be encoded
as DFAs. Table III shows precision and recall values between
languages recognized by these DFAs and L. All these values
were computed in close to real-time (in milliseconds) using
Intel Core i3-3110M CPU @2.40 GHz with 4 GB RAM.

The values in the left-most recall column in Table III
measure the share of traces from the log that are also the traces
of the model. Six models can “replay” all the log traces, hence
the recall values of one. The Single trace model accepts only
one trace from the log, which leads to the recall value of less

1https://github.com/akalenkova/eigen-measure.

Table III: Precision and recall values for synthetic log.

Model prec recall precτ recallτ

Original model 0.979 1.000 0.998 1.000
Single trace 1.000 0.798 1.000 0.732

Separated traces 1.000 1.000 1.000 1.000
Flower model 0.125 1.000 0.479 1.000

H andG in parallel 0.889 1.000 0.986 1.000
H andG in loops 0.568 1.000 0.933 1.000

D ina loop 0.758 1.000 0.970 1.000
All parallel 0.000 0.000 0.656 1.000
Round robin 0.000 0.000 0.479 1.000

than one. The All parallel model, which imposes a restriction
that all the labels must appear in a trace, and the Round robin
model, which executes all the activities in a particular order
without skipping them, do not accept a single trace from the
log. Therefore, the corresponding recall values equal to zero.
Note that the recall values that are based on the τ -closures of
languages show that the All parallel and Round robin model
describe traces that preserve the order (assuming skips in the
model traces) of events as they appear in the traces of the
event log, see the corresponding recall values of 1.000.

Let us now examine the precision values. We ranked the
models in accordance with their precision values in Table IV.

The table shows our rankings (last two columns) and
compares them with the rankings of other conformance tech-
niques calculated for the same models and log in [14], [15].
Concretely, these techniques are used (refer to columns 2–8 in
the table): Set difference (SD) [16], Negative events (NE) [17],
Escaping edges (ETC) [18], Alignment-based ETC precision
(ETCa) [19], Projected conformance checking (PCC) [20],
Anti-alignment precision (AA) [14], [21], and k-order Marko-
vian abstractions (MAPk) [15]. Greater values of k for the
latter technique correspond to less abstraction in the encodings
of models and logs and, thus, more “precise” precision mea-
surements. Column EB stands for the entropy-based approach
from Section IV, while EBτ for its extension from Section V.

The entropy-based approach (EB) ranks the models quan-
tifying the behavior which is “covered” by the traces of the
event log. Because models All parallel and Round robin are
not covered at all, their precision w.r.t. the log is the least,
while Single trace and Separated traces models are totally
covered and, thus, they have the best precision w.r.t. the log.

The ranking produced by the partial matching approach
(EBτ) is closest to that one by anti-alignment precision
(AA). The difference is that both our approaches show that
model H and G in loops has a lower precision than the model
D in a loop. Indeed, these models share the same traces with
the log, but the behavior described in H and G in loops model
has more variability, i.e., the number of sequences between C
and F is higher for H and G in loops model. The monotonicity
of the approach reported in [14], [21] is based on finite
concepts, such as maximal length of the log trace, while we
propose a more general approach capable of assessing infinite
behaviors described in models. Finally, note that in contrast
to the anti-alignment precision, using both our precision mea-
sures, i.e., EB and EBτ, allows for a more complete analysis by
differentiating between Flower model and Round robin model.

A

B

C

D

E

F

I

G H

Ʈ

(a) Original model

A B D E I

(b) Single trace model

A C G D H

A

A

A

A

B D E I

C D G H

C H D F

C D H F

F I

F I

I

I

(c) Separate traces model

Ʈ

A
B C

E

D

H
I

F G

Ʈ

(d) Flower model

A

B

C

D

E

F

I

G H

(f) G and H in loops model

A

B

C

D

E

F

I

G

H

Ʈ

Ʈ

(e) G and H in parallel model

A

B

C

E

F

I

G H

Ʈ

D

(g) D in a loop model

A

Ʈ

B

C

D

E

F

G

H

I

Ʈ

(h) All parallel model

A B C D E F G H I

(i) Round robin model

Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ

Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ Ʈ

Figure 6: Artificial process models from [14], [15].

Table IV: Rankings of precision values for synthetic log.

Model SD ETCa NE PCC AA MAP1 MAP2-7 EB EBτ

Original 7 7 9 8 7 7 7 7 7
Single trace 8 8 6 8 8 7 8 8 8

Separated traces 8 8 8 7 8 7 8 8 8
Flower 1 1 1 1 1 1 1 3 1

H andG in parallel 6 3 7 6 6 5 6 6 6
H andG in loops 1 5 5 4 5 3 3 4 4

D ina loop 1 6 4 5 4 5 4 5 5
All parallel 1 2 2 2 3 2 2 1 3
Round robin 1 4 3 3 1 4 5 1 1

B. Real-life Event Data

Next, we investigate the scalability of our approach to
verify whether it can be applied to real-life event logs. We
have analyzed BPI Challenge (BPIC) event logs2, which are
publicly available logs of real-life IT systems, and an event
log of a booking flight system (BFS). Prior to the analysis,
we filtered out infrequent events that appear less than in 80%
of traces using Filter Log using Simple Heuristics Process
Mining Framework (ProM) [22] plugin.3 For the filtered event
logs, the number of traces in a single log varies from 596
to 11,636 and the overall length of all the traces in a single
event log varies from 1,403 to 164,144. From each event log,
a Petri net was discovered using the Inductive miner [3]. This
discovery technique constructs bounded Petri nets, such that
their reachability graphs are DFAs. We used these DFAs as

2BPIC logs: https://data.4tu.nl/repository/collection:event logs real.
3All the filtered logs, including the BFS log, are distributed with the

implementation at https://github.com/akalenkova/eigen-measure.

representations of model behaviors to apply the partial match-
ing technique described in this paper. Since the entropy-based
approach is applicable to τ -free DFAs only, the DFAs with
silent transitions were converted to equivalent τ -free DFAs. It
was crucial to estimate the applicability of our approach in
order to show that despite the potential state space explosion,
it is still computationally feasible to construct an equivalent
τ -free DFA from an initial DFA with silent transitions [13]
obtained via the τ -closure operation. In our experiments, the
number of automaton states increases by no more than 10
times. The results of experiments, including the sizes of the
automatons, time (in seconds) taken for the determinization of
automata, entropy and precision and recall values calculation,
are presented in Table V. In these experiments, we used Intel
Core(TM) i7-3970X CPU @3.50 GHz with 64 GB RAM.

VII. CONCLUSION

In this paper, we proposed an extension of our entropy-
based precision and recall conformance measures, proposed

Table V: Time of determinization and entropy calculation for
real-life event logs (in seconds).

Event Automaton # States / Deter- Entropy Preci-
log # Transitions miniz. calc. sion /

time time Recall

L′ 90,557 / 446,847 141.455 4,641.421
BPIC’12 M ′ ∩ L′ 90,557 / 446,847 - 4,733.990 0.709 /

M ′ 3 / 33 0.001 0.013 1.000
L′ 216 / 629 0.171 0.235

BPIC’13 M ′ ∩ L′ 216 / 629 - 0.661 0.960 /
closed M ′ 1 / 3 0.001 0.010 1.000

L′ 24,336 / 72,994 1,909.794 2.187
BPIC’13 M ′ ∩ L′ 24,336 / 72,994 - 1.552 0.995 /
incidents M ′ 1 / 3 0.001 0.011 1.000

L′ 17 / 31 0.012 0.123
BPIC’13 M ′ ∩ L′ 17 / 31 - 0.003 0.980 /

open M ′ 1 / 2 0.000 0.011 1.000
L′ 22,359 / 200,254 37.947 2.427

BFS’13 M ′ ∩ L′ 7,542 / 45,163 - 1.516 0.939 /
M ′ 514 / 3,340 1.625 0.153 0.825

in [8], which quantify the similarity between traces described
in a designed process model and its corresponding executed
traces recorded in an event log. While precision quantifies how
well the traces of the model are represented in the log, recall
measures how well the traces in the log are represented in the
model. The extension addresses the phenomenon of partially
matching traces, i.e., non-identical traces that nevertheless
describe similar sequences of process steps. The extended
measures exhibit the intuitively desired property which es-
tablishes that more partially matching traces with matches
of greater length in the compared model and log lead to
greater precision and recall values. In [8], we showed that the
entropy-based precision and recall fulfill a range of important
properties of conformance measures that are not fulfilled by
the state of the art measures. The extended measures inherit
all those properties of the original measures, while all the
properties of the extended measures demonstrated in this paper
also apply to the original measures.

The reported qualitative and quantitative evaluation of the
proposed measures suggests that they can be useful in indus-
trial settings. We acknowledge that the extended measures,
still, have several limitations, which naturally give rise to
future work. Firstly, the proposed measures do not support
systems which cannot be described as DFAs, for example
infinite-state systems. To address this limitation, coverability
graphs may yield useful. The proposed extension based on
the dilution of the model and log traces has proven effective,
but also demonstrated a significant negative impact on the
efficiency of the measures. To cope with this deficiency,
secondly, we plan to exploit the properties of topological
entropy and structural features of log automata to simplify
certain “expensive”, in terms of time, computations. Thirdly,
the proposed approach considers distinct traces only and can
be extended to take into account frequencies of traces in event
logs. Finally, even though the state of the art conformance
measures do not satisfy the properties for completely matching
traces, refer to [6], [10] for details, they may satisfy the
properties for partially matching traces. Therefore, one can
verify if other measures satisfy the properties put forward in

this work. Also, we envision that the discussion on the desired
properties for conformance measures will continue within the
process mining community.

ACKNOWLEDGMENT

Artem Polyvyanyy was partly supported by the Australian
Research Council Discovery Project DP180102839. Anna
Kalenkova was supported by the Basic Research Program at
the Higher School of Economics.

REFERENCES

[1] W. van der Aalst, Process Mining: Data Science in Action, 2016.
[2] W. van der Aalst, A. Weijters, and L. Maruster, “Workflow mining:

Discovering process models from event logs,” IEEE Transactions on
Knowledge and Data Engineering, vol. 16, no. 9, pp. 1128–1142, 2004.

[3] S. Leemans, D. Fahland, and W. van der Aalst, “Discovering
Block-Structured Process Models from Incomplete Event Logs,” in
ATPN’2014, ser. LNCS. Springer, 2014, vol. 8489, pp. 91–110.

[4] A. Augusto, R. Conforti, M. Dumas, M. La Rosa, and A. Polyvyanyy,
“Split miner: automated discovery of accurate and simple business
process models from event logs,” KAIS, pp. 1–34, 2018.

[5] W. van der Aalst, A. Adriansyah, and B. van Dongen, “Replaying
history on process models for conformance checking and performance
analysis,” Wiley Interdisciplinary Reviews: Data Mining and Knowledge
Discovery, vol. 2, no. 2, pp. 182–192, 2012.

[6] A. Polyvyanyy, W. van der Aalst, A. ter Hofstede, and M. Wynn,
“Impact-driven process model repair,” ACM Transactions on Software
Engineering and Methodology, vol. 25, no. 4, pp. 1–60, 2017.

[7] J. Carmona, B. van Dongen, A. Solti, and M. Weidlich, Conformance
Checking—Relating Processes and Models. Springer, 2018.

[8] A. Polyvyanyy, A. Solti, M. Weidlich, C. Di Ciccio, and J. Mendling,
“Monotone precision and recall measures for comparing executions and
specifications of dynamic systems,” CoRR, vol. abs/1812.07334, 2018.

[9] W. Frakes and R. Baeza-Yates, Information Retrieval: Data Structures
and Algorithms. NJ, USA: Prentice-Hall, Inc., 1992.

[10] N. Tax, X. Lu, N. Sidorova, D. Fahland, and W. van der Aalst, “The
imprecisions of precision measures in process mining,” Information
Processing Letters, vol. 135, pp. 1–8, 2018.

[11] W. van der Aalst, “Relating process models and event logs—21 confor-
mance propositions,” in Proceedings of ATAED satellite event for ATPN
2018, ser. CEUR Workshop Proceedings, vol. 2115, 2018, pp. 56–74.

[12] T. Ceccherini-Silberstein, A. Machı̀, and F. Scarabotti, “On the entropy
of regular languages,” Theor. Comp. Sci., vol. 307, pp. 93–102, 2003.

[13] J. Hopcroft, R. Motwani, and J. Ullman, Introduction to Automata
Theory, Languages, and Computation (3rd Edition), Boston, USA, 2006.

[14] B. van Dongen, J. Carmona, and T. Chatain, “A unified approach for
measuring precision and generalization based on anti-alignments,” in
Business Process Management. Cham: Springer, 2016, pp. 39–56.

[15] A. Augusto, A. Armas-Cervantes, R. Conforti, M. Dumas, M. La Rosa,
and D. Reissner, “Abstract-and-compare: A family of scalable precision
measures for automated process discovery,” in Business Process Man-
agement. Cham: Springer International Publishing, 2018, pp. 158–175.

[16] G. Greco, A. Guzzo, L. Pontieri, and D. Sacca, “Discovering expressive
process models by clustering log traces,” IEEE Trans. on Knowl. and
Data Eng., vol. 18, no. 8, pp. 1010–1027, 2006.

[17] J. De Weerdt, M. De Backer, J. Vanthienen, and B. Baesens, “A robust
f-measure for evaluating discovered process models,” in CIDM. IEEE,
2011, pp. 148–155.

[18] J. Muñoz-Gama and J. Carmona, “A fresh look at precision in process
conformance,” in Business Process Management. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 211–226.

[19] A. Adriansyah, J. Munoz-Gama, J. Carmona, B. van Dongen, and
W. van der Aalst, “Measuring precision of modeled behavior,” Inf. Syst.
and e-Business Management, vol. 13, no. 1, pp. 37–67, 2015.

[20] S. Leemans, D. Fahland, and W. van der Aalst, “Scalable process
discovery and conformance checking,” Software & Systems Modeling,
vol. 17, no. 2, pp. 599–631, 2018.

[21] T. Chatain and J. Carmona, “Anti-alignments in conformance checking
– the dark side of process models,” in ATPN’2016, pp. 240–258.

[22] B. van Dongen, A. de Medeiros, H. Verbeek, A. Weijters, and W. van der
Aalst, “The ProM Framework: A new era in process mining tool
support,” in ATPN’2005, pp. 444–454.

